U of A computing scientist developing technology that could help platforms like Twitter and Facebook alert users to possible depression.
A new technology using artificial intelligence detects depressive language in social media posts more accurately than current systems and uses less data to do it.
The technology, which was presented during the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, is the first of its kind to show that, to more accurately detect depressive language, small, high-quality data sets can be applied to deep learning, a commonly used AI approach that is typically data intensive.
Previous psycholinguistic research has shown that the words we use in interaction with others on a daily basis are a good indicator of our mental and emotional state.
Past attempts to apply deep learning techniques to detect and monitor depression in social media posts have been shown to be tedious and expensive, explained Nawshad Farruque, a University of Alberta PhD student in computing science who is leading the new study.
He explained that a Twitter post saying that somebody is depressed because Netflix is down isn't really expressing depression, so someone would need to "explain" this to the algorithm.